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Abstract

In mathematical oncology, tumor evolution can be described by phase-field equations that model
the spatio-temporal dynamics of cell populations together with various biophysical mechanisms. Re-
cent surveys outline multiple families of such models, ranging from the prototypical Cahn-Hilliard
equation to multiphase formulations incorporating nonlocal cell adhesion, stochastic fluctuations, and
mixed-dimensional couplings to vascular networks. All these partial differential equation systems are
highly nonlinear, high-dimensional, and computationally demanding to solve with classical numerical
schemes, motivating the development of efficient surrogate models. Supervised operator learning has
emerged as a promising data-driven framework for approximating solution operators between infinite-
dimensional function spaces. Among theses approaches, the random feature method for operator
learning provides a well-balanced approach, combining scalability with rigorous theoretical guarantees:
It frames training as a convex quadratic optimization problem, admits convergence and complexity
bounds, and can be interpreted as a low-rank approximation of operator-valued kernel ridge regression
with close connections to Gaussian process regression. Within this framework, we construct random-
features for the Cahn-Hilliard equation as the prototypical model for tumor growth, demonstrating
accurate prediction of its solution operator and proving convergence of the method in this setting.
Building on these results, we try to extend the framework to the four-species phase-field tumor growth
model. The random feature method has seen limited application to partial differential equations, with
only a few isolated examples in the literature, such as the Burgers equation or Darcy flow. Our work
provides new insights into the method’s capabilities and extends its applicability to more complex par-
tial differential equations. Our numerical experiments illustrate that random-feature operator learning
provides a scalable, transferable, and discretization-invariant surrogate for the Cahn-Hilliard equation,
offering a promising computational tool for mathematical oncology.

Zusammenfassung

In der mathematischen Onkologie lassen sich Tumorwachstumsvorgiange mithilfe von Phasenfeld-
gleichungen beschreiben, die die raum-zeitliche Dynamik von Zellpopulationen unter Einbezug ver-
schiedener biophysikalischer Mechanismen modellieren. In der Literatur findet sich mittlerweile eine
Vielzahl solcher Modelle - angefangen bei der prototypischen Cahn-Hilliard Gleichung bis hin zu
Mehrphasenmodellen, die Effekte wie nichtlokale Zelladh&sion, stochastische Schwankungen oder die
Kopplung an vaskulére Netzwerke beriicksichtigen. All diese Systeme partieller Differentialgleichungen
haben gemein, dass sie hochdimensional und hochgradig nichtlinear sind, weshalb sie mit klassischen
numerischen Verfahren nur schwer effizient 16sbar sind. Dies motiviert die Entwicklung leistungsfiahiger
Surrogatmodelle. Supervised Operator-Learning hat sich in diesem Kontext als vielversprechender
datengetriebener Ansatz etabliert. Es ermdglicht, Losungsoperatoren zwischen unendlichdimension-
alen Funktionsrdumen effizient zu approximieren. Unter den verschiedenen Methoden zeigt sich die
Random-Feature Methode als besonders ausgewogen: Sie verbindet effizientes Training mit theo-
retischen Fehler-Abschitzungen, indem sie den Trainingsvorgang als konvexes quadratisches Opti-
mierungsproblem formuliert, Konvergenz- und Komplexitatsabschatzungen erlaubt und sich als niedri-
grangige Approximation operatorwertiger Kernel-Ridge-Regression interpretieren ldsst. Auf Grund-
lage dieser Methode konstruieren wir in dieser Arbeit Random Feature Funktionen fiir die Cahn-
Hilliard-Gleichung als prototypisches Modell fiir Tumorwachstum. Wir zeigen, dass sich der Anfangs-
bedingung-zu-Losungsoperator fiir die Gleichung damit prézise vorhersagen lasst und zeigen numerisch
die Konvergenz der Methode in diesem Setting. Aufbauend auf diesen Ergebnissen versuchen wir,
den Ansatz auf das sogenannte four-species model fiir Tumorwachstum zu erweitern. Bisher wurde
die Random-Feature-Methode nur auf wenige, ausgewahlte partielle Differentialgleichungen angewen-
det, etwa auf die eindimensionale Burgers-Gleichung oder auf Darcy Flow. Unsere Arbeit liefert
neue Einblicke in die Leistungsfihigkeit der Methode und erweitert ihr Anwendungsspektrum auf
komplexere Differentialgleichungen. Unsere numerischen Experimente demonstrieren, dass Random-
Feature-Operator-Lernen einen skalierbaren, iibertragbaren und diskretisierungsinvarianten Surro-
gatansatz fiir die Cahn-Hilliard-Gleichung bietet — und damit als ein vielversprechendes Werkzeug
fiir die rechnerische Modellierung in der mathematischen Onkologie betrachtet werden kann.
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1 Introduction

1.1 Overview

Cancer is one of the leading causes of death worldwide, and its incidence is projected to rise
significantly in the coming decades. In 2020, an estimated 19.3 million new cancer cases and
9.96 million cancer-related deaths were reported globally. By 2040, these numbers are expected
to increase to 30.2 million new cases and 16.3 million deaths per year [Sun+21]. Despite decades
of research, each tumor remains unique - driven by a complex interplay of biological, genetic,
and environmental factors - and there is still no universally effective treatment. As a result,
mathematical models of tumor growth have become increasingly important in oncology. They
alm to describe tumor progression in a mechanistic and predictive way, offering potential tools
for prognosis, therapy planning, and personalized treatment strategies [Fri23]. Before numerical
strategies can be developed, it is essential to ensure that the underlying model is mathematically
well-posed; a comprehensive survey of the well posedness for different tumor growth models can
be found in [Fri23].

Among the modeling approaches, phase-field models have emerged as particularly power-
ful tools for simulating tumor dynamics. These models represent tumors as multiphase systems
consisting of multiple interacting species such as tumor cells, healthy tissue, nutrients, and extra-
cellular matrix. Their mathematical formulation often involves higher-order partial differential
equations (PDEs), such as the Cahn—Hilliard equation, which can naturally incorporate non-
linearities, spatial-temporal couplings, and nonlocal effects like long-range cell-cell interactions
and memory phenomena [Fri23]. These features make phase-field models biologically realistic
and versatile. However, their simulation is computationally demanding. This is particularly
problematic when the model needs to be evaluated repeatedly - for instance, in uncertainty
quantification, optimal treatment planning, or real-time decision support.

To overcome these challenges, data-driven surrogate models have gained increasing atten-
tion. One promising direction is operator learning, a paradigm designed to approximate solution
operators of PDEs [KLS24]. Unlike classical regression methods, operator learning seeks to find
approximations for mappings between infinite-dimensional input and output spaces, such as
those arising from the evolution of tumor fields over time. Within the field of operator learning,
the random feature method (RFM) offers a particularly appealing trade-off between simplicity,
scalability, and theoretical rigor [NS24]. Instead of learning a deep neural network or using
a computationally expensive kernel method, the RFM approximates the operator as a linear
combination of fixed, randomly sampled nonlinear features. Only the linear output weights are
trained, which makes the optimization process convex and computationally efficient [KLS24].
Moreover, RFM-based surrogates are discretization-invariant, allowing them to generalize across
mesh resolutions once trained. This enables, for instance, studies of parameter variations or un-
certainty quantification to be performed without the need to solve the full PDE system each time.

However, the performance of the RFM in learning operators such as the initial-condition-to-
solution mapping at a certain timestep is heavily influenced by the design of the concrete random
features for the problem considered. The selection of feature functions and the underlying
probability distributions must be carefully adapted to the structure of the specific PDE and the
characteristics of the solution at the target timestep. In [NS24], the RFM has been successfully
applied to benchmark problems such as the one-dimensional viscous Burgers’ equation and the
two dimensional Darcy flow. However, its application to complex biological systems - particularly
phase-field tumor models - has not yet been explored to the best of our knowledge.



1.2 Contributions.

Our primary contributions in this work are now listed.

(C1) We apply the RFM to the stationary, linearized Cahn-Hilliard equation on a circular disk,
providing an explicit characterization of its kernel and the corresponding reproducing
kernel Hilbert space.

(C2) We successfully apply the RFM to learn the initial-condition-to-solution operator for the
Cahn-Hilliard equation by specifying the selected random features for an early timestep,
where spinodal decomposition just has started. Furthermore, we perform numerical exper-
iments that demonstrate two mesh-independent approximation properties that are built
into the proposed methodology: invariance of relative error to mesh resolution and evalu-
ation ability on any mesh resolution.

(C3) We develop a highly parallelized implementation of the REM that can be run on multiple
graphics processing units (GPUs). Our code is capable of computing an approximation
of the solution operator of a PDE within minutes, even for a great number of random
features and training pairs.

2 Theoretical Background

This section provides an overview of both the RFM and mathematical models used to describe
tumor growth. In section we first introduce the mathematical preliminaries of kernel meth-
ods, and then outline the RFM for operator learning based on [NS24]. Section[2.2) mainly follows
[Fri23] by giving an overview of the most fundamental models for tumor growth, in particular the
four-species model and the Cahn-Hilliard equation as the prototypical model for tumor growth,
which will be the model we apply the RFM to later in sections [3] and [4]

2.1 Random Feature Method for Operator Learning

Many modern machine learning methods rely on the concept of a kernel to implicitly map
data into high-dimensional feature spaces. The method, also known as the kernel trick, is
widely used in applications such as classification, regression, and dimensionality reduction. Let
x,x' € X ¢ R% d € N be samples and ¢ : X — H be a feature map transforming samples
to a high-dimensional (even infinite-dimensional) Hilbert space H, where the mapped data can
be learned by a linear model. In practice, the explicit expression of the feature map ¢ is not
necessarily known and instead of computing the map ¢(x) explicitly, it is often sufficient to
evaluate the inner product between two images p(z) and ¢(z) directly.

Kernel Functions and Reproducing Kernel Hilbert Spaces A kernel is a function k :
X x X — R for which there exists a Hilbert space H and a mapping ¢ : X — H such that

k(z,2") = ((x), p()) 2. (1)

X does not necessarily be equipped with a vector structure. A central example of a kernel is
the Gaussian kernel, defined on X = R? by

k(z,2") = exp (—W) : (2)

where v > 0 controls the width of the kernel. This kernel corresponds to an inner product in an
infinite-dimensional feature space H, where the implicit map ¢ is described by infinitely many
basis functions.



To systematically study functions defined via kernels, the concept of a reproducing kernel
Hilbert space (RKHS) is introduced. An RKHS is a Hilbert space Hj, of functions f : X — R
with an associated kernel k satisfying the following two properties:

e For every z € X, the function k(-, z) lies in Hy.

e For all f € Hj and z € X, the so-called reproducing property holds:

This property allows the evaluation of a function at a point to be expressed as an inner prod-
uct in the Hilbert space. It forms the foundation of many learning methods that minimize a
functional over an RKHS. A fundamental property of all kernels that generate an RKHS is
positive definiteness: A kernel k : X x X — R is called positive definite if it is symmetric (i.e.,
k(xz,2’) = k(a2',x)) and for arbitrary z1,...,z, € X and a4, ..., a, € R it holds that

ZZaiajk‘(mi,xj) Z 0. (3)

i=1 j=1

Every positive definite kernel function uniquely defines an RKHS in which the kernel acts as the
reproducing kernel. Conversely, every reproducing kernel is necessarily positive definite. This
one-to-one correspondence is also known as the Moore-Aronszajn theorem [WS21].

Due to the ease of computing the inner product, the kernel method is effective for nonlinear
learning problems with a wide range of successful applications. However, the kernel method
does not scale well to extremely large datasets. For example, given n training samples, kernel
regression requires O(n?) training time and O(n?) storage for the kernel matrix, which is often
computationally infeasible when n is large. Using random features is one of the most popular
techniques to overcome the computational challenges of the kernel method. The theoretical
foundation of random (Fourier) features builds on Bochner’s theorem, a central result from
harmonic analysis.

From Bochner’s Theorem to Scalar Regression Bochner’s theorem [Lia24] states, that
any continuous, shift invariant kernel k(x,y) = k(z — y) on R?, d € N is positive definite if and
only if k is the Fourier transform of a probability measure p:

k(x,x') = /Rd exp (i{w,x — x')) dp(w) = /Rd exp (i{w,x)) exp (i{w, x’)) dp(w). (4)

Following Rahimi and Recht [RR07|, we can approximate k using a Monte Carlo sampling: We
draw N independent and identically distributed samples {wy}re(y) from p(w), and define a
corresponding random Fourier feature map ¢ : R¢ — CV as

1
p(x;w) = i

By using |b, we are able to define a finite-dimensional kernel function l%(x,x’ ): X x X > Ras

[exp(i(wl,x>),...,exp(i(wN,x>)]T e CV. (5)

~

k(x,x) = (p(x), o(x))cn- (6)

We can also use random cosine features to approximate any shift-invariant kernel [Lia24]: Let
w ~ p(w) and b ~ Uniform[—n, 7]. Using N ii.d. samples {(wy,by)}i_,;, we define the feature
map:

d(x;w) = [cos((wl,x>+b1),...,cos(<wN,x>—i—bN)}T c RY, (7)
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and approximate the kernel k this time by

~

k(x,y) = (6(x), o(y))rn - (8)

This reduces kernel computation to a low-dimensional inner product, enabling scalable learning
with O(dN?) time and O(dN) storage.

From Scalar Regression to Operator Learning Operator learning generalizes function
regression to the setting where both input and output spaces are infinite-dimensional - typically
functions defined on a continuous domain. In operator learning, the goal is to learn an approx-
imation F' for the map Ft . X — Y between the Banach spaces X and ), based on a finite
training dataset (a;,vy;);_; C X x Y of input-output pairs. Here, a; represents the coefficient,
boundary, or initial data of the PDE our surrogate model should approximate, and y; = F' (ai)
represents the corresponding PDE solution. The inputs (a;)}_; are drawn from a data distribu-
tion v on X, which may either be a deliberate modeling choice at the chosen discretization or
an unknown quantity.

To learn such operators in a nonparametric and nonintrusive fashion, Nelsen and Stuart
[NS24] extended the random feature methodology to the function-valued setting. In [NS24],
they introduced a random feature map ¢ : X x © — ), where 6 € O is drawn from a probability
measure p on O. This induces an operator-valued kernel

kula,d') == E"*[$(a;0) @ ¢(d'; 0)], (9)

that defines a reproducing kernel Hilbert space (RKHS) Hy, C LZ(X;)Y) of operator-valued
functions in the following manner:

My, = {E*[c(0)¢(:0)] : ¢ € L7(6;R)}. (10)

Eq. indicates that the space Hy,, defined by the feature pair (¢, 1) and coefficient functions
ce LH(G; R), provides a very general nonparametric class of operators for approximation. How-
ever, directly working with this space is typically impractical, since implementing estimators in
Hk, leads to extremely high computational costs unless additional strong assumptions are made
about the structure of (¢, ). To overcome this limitation, Nelsen and Stuart [NS24] adopted
a parametric approximation: instead of representing the operator with an infinite-dimensional
feature space, they considered a finite number of randomly sampled features. According to re-
sult 2.6. in [NS24], under the assumption of ¢ € L2, (X x ©;)) and linear independence of

XU

the random features {¢(+;6;)}7L; in L2(X;Y), the RKHS H(m is equal to the linear span of
{o( Hj)}gnzl. Here, k(™) is the empirical approximation to k,, that is,

K (ad') = B [0(a:0) @ p('30)] = — 3~ (a3 0) © pla's ). (11)
j=1

with (™) denoting the approximation of the measure p by the empirical measure

1 i
plm) = - Zégj, where 6; i L. (12)
j=1

dp; in eq. denotes the Dirac measure. By applying a Monte Carlo sampling approach to the
elements in the RKHS and replacing the probability measure p by the empirical measure
1™ in eq. we obtain

m
> cl0;) ¢(:6;) ~ E"[e(0) o(0)]  for ¢ € L(6;R). (13)
j=1



Low-rank approximations using Monte Carlo sampling achieve the classical rate O(m_l/ %) in
expectation and belong to the finite-dimensional RKHS H, ). However, in the present setting,
the Monte Carlo approach is not directly implementable for learning a target map FT € Hk,,,
since the operator FT, the kernel k., and the associated RKHS Hy, are all unknown. Further-
more, in practice, F' may not even belong to Hk,,, introducing a smoothness misspecification
gap that the Monte Carlo method does not address. To overcome these limitations, the RFM
employs a data-driven optimization strategy to construct an estimator of F within Hyomy. We
formalize the RFM as follows:

Random Feature Model (RFM) Let (X,B(X),v) and (©,B(0), 1) be probability spaces
with & and © finite- or infinite-dimensional real Banach spaces. Let ) be a real separable
Hilbert space, and let ¢ € L12/®u (X x ©;)). Then the Random Feature Model is the parametric
map

1 ii
Fp : XXxR" =Y, (a;a)—= Fplaa):=— Zaj o(a;0;), 6, id 1y (14)
m
j=1
where a = (aq, ..., am,)T € R™ is the vector of trainable coefficients. The RFM aims to approx-

imate FT e Hi, by Fm(-;a) € Hyom, with a € R™ determined from the empirical input-output
data. The method is itself random and may be viewed as a spectral method, since the random-
ized family ({¢(+;6)}) in the linear expansion is defined v-almost everywhere on X'. Determining
« from data obviates the necessity of explicit kernel evaluation and circumvents the limitations of
the Monte Carlo prediction, relying only on the pair (¢, 1) and sample input-oustput pairs from
the target operator F'T. F,, is linear in «, but highly nonlinear in a. Similar to operator learning
architectures such as neural operators and Fourier neural operators [Li+21], the RFM is a non-
linear approximation, so its output F,,(a;«) lies on a nonlinear manifold in ), unlike methods
such as PCA-Net [Bha+21] or DeepONet [LJK21], which are restricted to fixed linear subspaces.

The choice of the random feature pair (¢, i) largely determines the approximation quality as
will be further demonstrated in sections|3|and |4l While most kernel-based approaches first select
a kernel and then derive a random feature map, the RFM perspective proposed in [NS24] is to
select (p, ) first, which implicitly defines the kernel via eq. and avoids explicitly computing
it, reducing memory and computational costs. However, this approach leaves open questions
about the universality of the resulting kernels and the structure of the corresponding RKHS
Hi,, -
Training Process One of the main advantages of the RFM resides in the structural simplicity
of its training procedure. Under an L2-type loss, minimization of the empirical risk constitutes a
convex optimization problem, reducible to the solution of a finite-dimensional linear system. This
is in sharp contrast to deep neural operators, whose training necessitates nonconvex stochastic
gradient descent, rendering both theoretical analysis and numerical implementation substan-
tially more challenging. Crucially, the RFM formulation does not require explicit knowledge of
the operator-valued kernel k,,, relying instead solely on the associated random feature pair (¢, u).

Let us consider n input-output pairs {(a;,y;)}"; C X x Y with a; ~ v and y; = F'(a;).
Employing a penalized least-squares loss over the RFM hypothesis class is rigorously equivalent
to performing kernel ridge regression restricted to the span of the random features [NS24]. The
optimal coefficient vector a = (g, ..., ) € R™ is determined by the m x m normal equations

n

Z (;LZ<§0<ai§9l)v¢(ai§0j)>y+)\51j>aj = Z(gp(ai;ﬂl),yi>y, l=1,...,m, (15)
7=1

i=1 i=1



where A > 0 denotes an regularization parameter and d;; is the Kronecker delta. The solution
of this system fully specifies the trained RFM F,,(;«) as a linear functional of the output
data {y;}!" ;. While this linearity implies statistical suboptimality for certain problem classes,
adaptively selecting the feature pair (¢, ) or the regularization parameter A based on the data,
for example via cross-validation, can restore near-optimal performance.

Error Bounds The RFM is one of the few operator learning methods where rigorous conver-
gence and complexity guarantees could be proved. Under suitable assumptions on the bound-
edness and measurability of the data and the feature map ¢, the RFM admits rigorous gener-
alization guarantees: In the limit where the number of features m and the number of training
samples n both tend to infinity at appropriate rates, while the regularization parameter A simul-
taneously tends to zero at an appropriate rate, the trained model F,, (+; d(l)) converges almost
surely to the true operator F' in the L2(X;)) norm (cf. theorem 2.11 in [NS24]). Also, up
to constant factors, an appropriately tuned regularization parameter A ~ n and a number of
random features m ~ n are sufficient to guarantee a trained RFM generalization error of order

—1/4 —-1/2

n >~m

with high probability (cf. theorem 2.12 in [NS24]). However, this quantitative result relies on
the well-specified condition FT e Hk,,, which is generally difficult to verify in practice. On the
other hand, this allows us to draw conclusions about whether FT Hk, by analyzing the relative
error w.r.t. m, as we will see in section [4f for the Cahn-Hilliard equation.

Practical Considerations As stated in [NS24], the success of the RFM depends critically
on the choice of the random feature pair (¢, u). In practice, ¢ and p are often chosen to reflect
the structure of the problem. For example, ¢ may be constructed using Gaussian processes,
trigonometric bases, or even randomized neural networks. The concrete choices of (¢, u) for the
biological models described in the following subsections are one of the main contributions of this
work.

2.2 Tumor Evolution Models

The growth and evolution of tumors are complex processes involving a multitude of interacting
biological phenomena like nonlocal effects, nonlinearities, and stochasticity. To capture this
complexity mathematically, we often turn to continuum mixture theory. This approach allows
us to model the tumor and its surrounding environment as a mixture of different constituents
or species (like cancer cells, healthy cells, and nutrients), where each species is represented
by a field describing its volume fraction. The interactions and dynamics of these species are
governed by fundamental physical laws, primarily balance laws and constitutive laws. For a
comprehensive overview of tumor growth modeling, we refer the reader to [Fri23]. In what
follows, we summarize the main models relevant to our work, in particular the Cahn—Hilliard
equation and the four-species model.

2.2.1 Cahn-Hilliard Equation

The Cahn—Hilliard equation can be considered as the prototypical model for tumor growth
[Fri23]. It is a parabolic partial differential equation of fourth order that describes phase sepa-
ration in binary mixtures, such as the separation of two components in a fluid. For example, the
dynamics of spinodal decomposition is commonly modeled using the Cahn-Hilliard equation.
As a phase-field equation of the diffuse-interface type, it features the fundamental characteristic
that the solution is either 0 or 1, or changes smoothly from one to the other. Therefore, it is
well-suited as a base model for tumor growth if the 1-phase represents the presence of tumor
cells, while the O-phase indicates their absence.



The equation can be derived from the mass conservation law. If we consider two components
with concentrations ¢; and ¢2 such that ¢; + ¢2 = 1, their concentrations obey the mass
conservation law:

Oy = —divd;, i € {1,2}, (16)

where J; denotes the mass flux of the i-th component. We assume that the flux is conserved, i.e.
Ji1 + J2 = 0, and reduce the equations by defining the quantities ¢ = ¢1 — ¢ and J = J; — Jo
yielding

Oy = —divd. (17)

J is given by the negative of the gradient of the chemical potential p, i.e., J = —Vu. A more
general form incorporates a mobility function m into the flux describing microscoping interac-
tions and yielding to J = —m(¢)Vu (cf. |Gur9s]). Following |[CH58], The chemical potential p
can be calculated as the Gateaux derivative of the Ginzburg-Landau energy functional

)= [ (w6 +51vo) i

with e expressing the interfacial width and ¥ denoting a double-well potential, e.g., the Landau
potential ¥(¢) = %(bQ(l — ¢)2. This leads to the Cahn-Hilliard equation with concentration-
dependent mobility:

0up =V - (m(§)Vi) = V- (m(¢)V(¥'(¢) — €A0)). (19)

The mobility function is often of the form m(¢) = M¢?(1 — ¢)? for some constant M > 0.
U’ can also be considered as the density of the free energy of the homogeneous system and
€2 as the gradient energy coefficient, which describes the energy of the concentration gradient.
The scenario of constant mobility has been exhaustively examined, and well-posedness can be
demonstrated through the use of sufficient assumptions, as done in [Mir19|. For this reason, the
present work will consider this scenario exclusively in sections [3| and

2.2.2 Multiple Constituent Model

In a more general framework, we can consider a medium with NN interacting constituents. At
a given place z € Q C R? d € N, we allow multiple mechanical and chemical species to
coexist in accordance with the continuum mixture theory paradigm. We represent the volume
fraction of each species by a field ¢,, 1 < a < N. For the sake of convenience, we denote with
oa = (0a)aca, where A := CH & RD @ OD denotes the index set that disjointly separates
between the phase-field index set CHI, the reaction-diffusion indices RID, and the evolution indices
OD that correspond to abstract ordinary differential equations (ODEs). Following the work of
Lima et al. [LOA14; LAO15|, the constituents, ¢,,a € A, are subject to the extended mass
balance law

8t¢0( + div(¢ava) = —div Ja(¢A) + Sa(gbA)? (20)

where v, is the cell velocity, S, is a mass source term dependent on the species, and J, is
the flux of the a-th constituent. If >~ _, Sa(¢a) = 0 holds, we call the system closed. The
flux is proportional to the negative gradient of the chemical potential, multiplied by a mobility
function:

Joz(d)A) = *ma(ﬁbA)vﬂav (21)

with p, representing the chemical potential of the a-species, and m, representing the mobility
function, which may depend on all constituents. In [Fri23|, Fritz proposed the system’s energy

Dg

52
e = [ Woew) + 800+ 3 2IVouf+ Y Lok ¢ e, (22)
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where €, (o € CH) is a parameter that characterizes the thickness of the interface separating the
different cell types. The function @ is used to describe adhesion mechanisms such as chemotaxis
and haptotaxis. W represents a double-well potential as in the Cahn-Hilliard equation Fol-
lowing the approach used for the Cahn—Hilliard equation, Fritz [Fri23] computed the Gateaux
derivative of the Ginzburg-Landau energy [22] with respect to the relevant constituents. This
yields the corresponding chemical potentials:

fta = O, U (pcm) + Op, ®(Pn) — e2A¢4, o € CH,
p5 = Dpdp + 0py ®(dn), B € RD, (23)
py = 0, P(a), v € OD.

Combining eq. with the mass balance equations and yields the multiple constituent
model:

(00 + div(pava) = div(MadZ (1 — ¢0)*Via) + Sa(da) a € CH,

fio = Do W (dcm) + O, B(P4) — €2 A0 a € CH,
(24)
Oup + div(65v5) = div( MgV (D + 09, ®(64)) ) + Sp(0n) € RD,

Oppry = Sv(¢A) ~ € OD.

Here, M, and Mg denote constants that arises from the mobilites, which are typically assumed
to be:
Ma(¢a) = Ma d3(1 — ¢a)’, a € CH,
mg(pa) = Mg, B € RD, (25)
Mo (¢a) =0, ~v € OD.

2.2.3 Four-Species Tumor Growth Model

A fundamental example of the multiple constituent model is the four-species model. Is was
introduced by Hawkins-Daarud et al. in [HZO12], incorporating volume fractions of tumor
cells, healthy cells, nutrient-rich extracellular water, and nutrient-poor extracellular water. The
mathematical well-posedness of this model has been studied by Garcke and Lam |GL16}; GL17a;
GL17b|, while Frigeri et al. [FGR15; FLR17] investigated the effects of degenerating mobility
functions. Due to the fact that the model is based on a fourth-order PDE with concentration-
dependent mobilities, the uniqueness of weak solutions is unresolved, even for the prototype
model in [19] [EG96]. Further theoretical analysis includes optimal control aspects [CGR+17]
and studies of long-time behavior [CGG11; |[Mirl9).

The four-species model can be derived from the multiple-constituent model 23] by specifying
the constituent sets as follows: A = {T, 0}, CH = {T'}, RD = {0} and OD = (). The volume
fraction of tumor cells, ¢, is interpreted as an averaged cell density, providing a homogenized
description of several thousands of cells. The field ¢, represents the local nutrient concentration.
Moreover, we introduce the adhesion function ®(¢r, ¢,) = —xcd1rds in the energy functional
(2.6), with x. > 0 being a chemotaxis parameter. For both tumor cells and nutrients, we assume
a volume-averaged velocity, which is a reasonable approximation given the dense packing of
cells. Incorporating these assumptions into the multispecies framework leads to the so-called
four-species model:

Ovr + div(prv) = div (M7 (1 — ¢7)*Vur) + Sr(or, éo)
Hr = W/(¢T) - Xc(z)a - E%AQST (26)
at(bo' + diV(¢av) = div (MUV(DU¢0' - XC¢T)) + SU((bT? ¢0)
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Indeed, system [26| can be derived from the four constituents volume fraction of tumor cells ¢,
healthy cells ¢¢, nutrient-rich extracellular water ¢,, and its nutrient-poor counterpart ¢q,.
Source functions, expressed as sink and source terms, are of particular relevance. Tumor cells
consume nutrients, making growth proportional to nutrient depletion, while apoptosis supplies
additional nutrients through the recycling of dead cells. In the four-species model we often
consider the source function

S1(¢1, ¢0) = —So (b1, ¢0) = Ap"° dodr (L — d1) — A7 o, (27)

where A1 denotes the proliferation rate and A7*° the apoptosis rate.

To incorporate mechanical effects, velocity fields have been added under various assumptions.
Initially modeled via Darcy’s law [GL16; |GLN+18], the velocity description has since been
extended to the Brinkman law [EG19a; EG19b], unsteady Darcy—Forchheimer—Brinkman law
[FLO+19|, and the Navier-Stokes equations [LW17; |[He21|. The chosen velocity law significantly
influences the morphology and growth direction of the tumor, with a comparative discussion and
visualization of models presented in |[GLS+16].

3 Application to PDE Solution Operators

In this section, we design the random feature maps ¢ : X x © — ) and measures p for the
RFM approximation of three PDE parameter-to-solution maps: the stationary, linearized Cahn-
Hilliard equation on a circular disk in subsection the inital-condition-to-solution operator of
the Cahn-Hilliard equation at an early timestep where spinodal decomposition just has started
in subsection and the initial-condition-to-solution operator of the Cahn-Hilliard equation for
late timesteps where the two phases already have formed in subsection In kernel methods,
the specification of (¢, u) is central to the accuracy of function reconstruction. While RFMs
are purely data-driven and agnostic to the governing PDE, following [NS24], we emphasize that
prior knowledge should inform the choice of (¢, ). The systematic identification of effective
random feature pairs, yielding data-adapted kernels, remains an open problem. In this work, we
employ feature maps ¢ that are nonlinear in both arguments and specify a probability measure
v on the input domain X for each PDE setting. This choice is crucial: although we aim for out-
of-distribution generalization, reliable performance can only be expected on inputs statistically
aligned with those sampled from v.

3.1 Stationary, Linearized Cahn-Hilliard Equation on a Disk

The linearized, stationary Cahn-Hilliard equation describes the behavior of small perturbations
around an equilibrium state in a binary mixture. It is an important tool for analyzing phase
stability in materials. It arises from the general Cahn-Hilliard equation [19| by assuming constant
mobility m(¢) = mg and considering small perturbations ¢ = ¢ 4+ n1 around a homogeneous
equilibrium state ¢g, where n < 1. Linearizing the chemical potential and neglecting higher-
order terms yields a fourth-order linear PDE in ¢. In the stationary case, where 0y = 0, eq.
19 reduces to:

A (€AY + T (¢o)y) = 0. (28)

By rescaling the spatial units such that €2 = 1 and assuming ¥”(¢o) = 1, the equation simplifies
further to the canonical form of the linearized, stationary Cahn—Hilliard equation:

AA+1)p =0 (29)

We now apply the RFM to eq. 29| defined on a disk D = {(z,y) € R? | 22 + 32 < R?} for some
R > 0. Bessel functions are the natural spectral and eigenfunction system for the Cahn-Hilliard



problem in radially symmetric geometries [GLWO01|: When separated in polar coordinates, eq.
decomposes into a Laplace and a Helmholtz part. The solutions of the Laplace part

Ay =0 (30)

can generally be expressed as

Wi (r,0) = i (Amr|m| T er7|m|> ¢imf. (31)

m=—0oQ

with A,,, B, € C. Regularity at the origin enforces B,, = 0. The Helmholtz part:

(A +1)m =0, (32)
yields as possible solutions
br(r0) = Y (Cndim(r) + DY (r)) €™, (33)

where C,,, Dy, € C, and J,,, denotes the first and Y}, the second Bessel function. Again, requiring
regularity of the solution enforces D,, = 0. By assuming Dirichlet zero boundary conditions on
the boundary of the disk:

1/1(37 0) =0, (34)

only the Helmholtz part remains, whose admissible wavenumbers are discretized. ¥ can then
be represented as a Fourier-Bessel series,

¢(T> 0) - Z Z Zn,me (pn,m%) eimﬁ’ (35)

m=—ocon=1

where p;, ,, denotes the n-th zero of J,,, and Z,,,, € C. The Fourier-Bessel series is a particular
kind of generalized Fourier series based on Bessel functions, particularly used for cylindrical
coordinate systems. In the following, let L denote the operator

L:=A(A+1) (36)
on the disk D = {(r,0)|r < R} with Dirichlet boundary ¢|,—r = 0. Using eq. we can

determine the Green’s function, G, as

GL((r,0),(r,6)) = > > Xnmnm(r,0)nm(,0) (37)

m=—ocon=1

with the eigenfunctions

wn,m(rv 9) = N,

and the eigenvalues
)\n‘m

= ((onn/ B (/B2 + 1) (39)

Here, Ny, denotes a normalization factor. With this theoretical background, we are able to
provide a two-dimensional instantiation of the RFM for the linearized, stationary Cahn-Hilliard
equation: Take the input space as X' := L?(ID), output space as )V := L?(ID), input space measure
d. We define our random feature mapping ¢ : X x Z — )Y by

¢la; x) () = (a, Yy )y (x) (40)
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with

Py (x) = Py (13 0) == )\fm Im, (Pr;%m 7“) cos(mb +b), (41)

X = (n,m,b) € Nx N x [0,27] and p := figpec ® Unif[0, 2w). The measure fispe. is defined via
the spectral values A, ,,, in eq. by

)\nm
e, m) 1= <5 (42)

The induced kernel k, : X x X — L£()) can then be calculated as

ku(a,a’) = EO# [¢(G‘X)¢(a/‘x)}
= Z )\ @Z}n m < ,7 wn,m>¢n,m ® ¢n,m (43)

= <a, L~ 'd\Gy,

with the Greens function G, from eq. Using this fact, we may explicitly characterize the
associated RKHS Hy,, as follows. First, we have

Ty, f = (a, L7 a")GL[f] = (a, L' )L7'f (44)

If we view Tj, as an operator from L?(D) into itself, we conclude with eq. that for any
elements f and g of Hy,, it holds that

_ 1
(f, 9, = ([, Tk#19>L2(]DJ) = m<f, Lg) 12y (45)

By this argument, the reproducing kernel Hilbert space (RKHS) Hy, can be, up to a constant
factor, identified with the energy space associated with the operator L, defined as

Hy, = {h € L*(D) | (h, Lh) < oo}. (46)

In particular, the RKHS consists of those functions whose L-energy is finite. For the more
complex problems we study numerically in the next two subsections, we do not have knowledge of
effective, computable bases for general maps in infinite-dimensional spaces. The RFM approach
leverages randomness to explore these maps, implicitly uncover their structure, and provide a
means to represent them.

3.2 Cahn-Hilliard Equation - Early Timesteps

The Cahn—Hilliard equation is representative of the mass-conserving, diffusion-dominated PDE
problem class; these time-dependent equations arise as gradient flows of free energy functionals,
and the nonlinear, higher-order diffusion drives phase separation and interface dynamics. The
initial value problem we consider in this work is

Orp = mV*(W'(¢) — €A¢) in (0,00) x [0, L],
o(,x)=¢(,x+ Ley), in (0,00) x {0, L} x [0, L], 47)
¢(,x) =¢(, v+ Lea) in (0,00) x [0, L] x {0, L},
»(0,-)=a in [0, L]?,
with
U(g) = Wo*(1 - ¢)? (48)
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as the bulk free energy and L as the length of the quadratic domain [0, L]> € R2. The constant
W can be regarded as the height of the thermodynamic barrier. The initial condition a serves
as the input and is drawn according to a Gaussian measure defined by

a ~v = N(0.5,0.05Id),

which represents white noise after subtracting the mean value of p = 0.5. For the Cahn—Hilliard
equation, mass is conserved and the gradient contribution to the free energy is finite; therefore,
we choose the space
1 1
Hly(Q) = {u c H'(Q) : /Q
with C' = const. for both the initial condition and the solution at a timestep 7T

u(z) dr = C’},

FT: Hjpy (Q) = Hi) (), a— F'(a) = ¢(T,") (49)

We now describe our found random feature map for use in the RFM that worked best for
approximating the solution operator at a timestep, where spinodal decomposition just has
begun. Our chosen random features can be categorized as Fourier space random features and
have some parallels to the random features used for the Burgers’ equation in [NS24]. Let F
denote the Fourier transform over the two-dimensional spatial domain D. We define our random
feature mapping ¢ : X x © — Y by

v(a;0):=0c (f_l(xfafﬂ)) , (50)

where o(.) denotes the ELU function defined below as a mapping on R and applied pointwise to
the inverse Fourier transform. Note that the product FaF60 corresponds to applying the Fourier
transform to the convolution of a with 8, i.e. ¢(a;6) := o (F~'(xF(a*6))). The map ¢(-;6)
essentially performs a filtered random convolution with the initial condition.

Considering the parameter space © C L?(Q;R), the randomness enters through 6 ~ p :=
N(0,Id) with Id denoting the identity covariance operator. 6 € © is white noise on Q: At each
spatial location we draw a random variable out of a standard normal distribution independent
of the draws on the other spatial location within the domain 2. Choosing the right wavenumber
filter function x : R>g — R is now crucial in order to achieve a good approximation accuracy
with a reasonable number of random features. The trick for the Cahn-Hilliard equation is to
incorporate only the physically relevant spectral properties into the random features, analogous
did in [NS24] for the one-dimensional Burgers’ equation. In our case, this is achieved by exploit-
ing the dispersion relation of the Cahn-Hilliard equation, which can be deduced from eq. by
linearizing around a homogeneous, stationary state ¢q:

P(z,t) = ¢o + 0p(z,t), with d¢ < 1. (51)
Expanding ¥’ to first order yields
U'(¢) = V(o) + V" (¢0)d¢. (52)

Substituting eq. [51] and [52] into eq. [19] and neglecting constant terms provides the linearized
equation

8¢ =mV? (U (¢0)dgp — € AS¢) . (53)
We now apply a Fourier mode ansatz
S(a,t) = g(k)e T ALY, (54)
which implies
V235 = —|k|?0p, Adp = V?5¢. (55)
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Inserting this into the linearized eq. yields the dispersion relation
A(k) = —m[k[* (9" (¢o) + €[k[*) . (56)

This relation determines the growth or decay rate of perturbations of wavenumber k. By unifying
the constants, eq. can be written as

A(k) = [k*(8 = 71k (57)
Maximum growth occurs at

K= (58)

i.e., at an early timestep the patterns predominantly have wavenumber k*. In a random real-
ization pattern, the spectral power density S(k) is distributed around this value. To selectively
enhance these intermediate-wavelength patterns while suppressing unwanted fluctuations, we de-
sign our filter function x to act on the spectrum A(k) in the following manner: For small values
of |k|, we have (k) ~ B|k|?> > 0, and allow these modes to pass through the filter. In contrast,
for large values of |k|, A(k) < 0 and should therefore be clipped to zero, effectively blocking
these modes. For very small k =~ 0, \(k) — 0, and these modes should strongly be suppressed.
Hence, the filter should effectively act as a band-pass: it should suppresses low-frequency modes
corresponding to large-scale patterns, suppresses high-frequency noise, and retains intermediate
frequencies, such as those associated with interface patterns. We thus choose as wavenumber
filter function y:

x(k) := oy (27|k|), where o, (r) := \/max (0,72(8 — yr?)), (59)

where 5 > 0 and v > 0. Figure [I]illustrates a sample input and output from . The parameters
B and ~ are simply hand-tuned for performance, but not strictly optimized. We choose the
activation function o in eq. to be the exponential linear unit:

x, ifx>0

60
e -1, ifx<O. (60)

xz +— ELU(x) := {

By conducting empirical tests, we also found ELU(-) to perform better in the REM framework
than several other commonly used activation functions in machine learning frameworks like

ReLU(-), tanh(-), sigmoid(-), SeLU(-), and softplus(-).

3.3 Cahn-Hilliard Equation - Late Timesteps

For late timesteps, the filter function defined in eq. does no longer provide an adequate
representation of the underlying physics, as the two phases have already formed. We need to
find random features that model the multiscale behavior of the phase separation well. In this
work, we tried out an approach to approximate the solution operator [49|at these later timesteps
by using random features built up of cosine functions, which we call cosine random features.
Their choice was inspired by the results Liao presented in [Lia24], in which Liao introduced a
random feature—based framework for solving specific PDEs by directly approximating the solu-
tion at collocation points. In this framework, random features are employed to approximate the
solution of a PDE directly, rather than learning a general operator. Our idea was by adapting
the design principles of the random features in [Lia24] to operator learning, we can construct
highly accurate features for approximating the solution operator [49] of the Cahn—Hilliard equa-
tion at late timesteps. Unfortunately, this approach has proven to be ineffective. Nevertheless,
we provide in the following a short overview of that approach by first giving an overview about
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Figure 1: Random feature map construction for the Cahn-Hilliard equation at an early timestep
(T = 5.0): (a) displays a representative input draw a ~ v = N(0.5,0.05Id); (b) shows a
representative parameter draw 6 ~ pu = N(0,1d), while (d) displays the corresponding random
feature ¢(a; ) belonging to that a and . (c) show the filter function k — x(k). Here, 5 = 45.0,
and v = 0.06678.
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the main results in [Lia24] relevant for our choice of (¢, u):

Consider a PDE of the form
Plul(z) =0, ze€QCR" Blu|(z) =0, z €09, (61)

where P is the interior differential operator and B the boundary operator. The idea presented
in |Lia24] is to represent the solution u* of [61) as a randomized feature expansion

N
ul(@) = plaswr), (62)
k=1

where {wk}]kvzl are i.i.d. samples drawn from the spectral density p(w) guaranteed by Bochner’s
theorem, and ¢ (x;wy) are random features such as

o(x; wy) = cos({wg, ) + b), by, ~ Unif[—m, 7]. (63)

The coefficients c/,ﬁC are then determined by enforcing the PDE and boundary conditions at a

finite set of collocation points. For interior collocation points {x]}j\iﬂl and boundary points
{z; }j]\/i My+17 the training problem takes the form of a convex regression problem:

Mq M
crg}i@ llcll3 + M\ Z (P[Uﬁ](wj))Q + A2 Z (B[uﬁ]@j))Q? (64)
j=1 j=Mq+1

with the hyperparameters A1, A > 0. This approach leverages the fact that random features
approximate the RKHS associated with k, ensuring convergence to the true PDE solution as
the number of collocation points and features increases.

However, operator learning does not aim to approximate a single PDE solution but instead
aims to learn a mapping from problem data (e.g., an initial condition a) to the corresponding
solution u. Consequently, the random features cannot depend only on the spatial variable z
but must also encode the dependence on the input function a. Extending this to the RFM for
operator learning raises the question of how to represent a in the random features ¢ so that
©(+;6) becomes a highly nonlinear function of a. As shown in section [4 this is a challenging
problem, and we did not resolve it fully in this work.

One possible approach is to aggregate a and incorporate it into the frequency or phase
information. Our method instead couples a pointwise with the cosine functions. Specifically, in
section [4.2] we consider the cosine random feature mapping ¢ : X x © — Y defined as

o(a;0)(x) :== a(a(x) -cos((z, w) + b)), (65)

where o is a nonlinear activation and a ~ v = N(0.7;0.05Id). [65| makes ¢ a nonlinear function of
a, enabling a random feature model that could, in principle, approximate the initial-condition-
to-solution operator 9] For o, we used a sharpened sigmoid function

1

U:R%[O,l], xHO’(m):m

(66)
with 8 > 0, that is applied pointwise to take into account the binary structures. The parameter
space O consists of § = (w, b), where w € R? are two random frequencies drawn from N (0,1/1%1d)
and b € [0,27) is a random phase. An example (a,¢(a;0)) pair is shown in figure 2| However,
as discussed in section [£.2] applying this random features to the solution operator [49] for late
timesteps shows to be only suited for fitting a single input-output pair and does not generalize
well to operator learning.

15



= 1.0
0.85

0.8
0.80
0.75

0.6
0.70

0.4
0.65
0.60

0.2
0.55

| , 0.0

2 3 4 5 6
X
(a) Representative Input a ~ N(0.7,0.05Id) (b) Random Feature

Figure 2: Random feature map construction for the Cahn-Hilliard equation at a late timestep
(T = 50.0): (a) displays a representative input draw a ~ v = N(0.7,0.05Id), while (b) displays
the corresponding random feature ¢(a;6). Here, § = 100.0 in the activation function o.

4 Numerical Experiments

We evaluate the performance of the RFM for approximating the operator FT : X — ) in eq.
Implementing the approach on a computer requires discretization of the input-output function
spaces X and Y. In the following numerical experiments, all infinite-dimensional objects - in-
cluding training data, evaluations of random feature maps, and random fields - are discretized on
an equispaced mesh with K2 points. This equispaced choice enables the fast Fourier transform
(FFT) with O(K?log K) computational complexity in two spatial dimensions.

However, the use of equispaced points does not limit the method, since the RFM is formu-
lated in function space and can be implemented numerically with any spatial discretization. This
discretization leads to a high - but finite - dimensional approximation of operators mapping RX :
to RE? via similarly discretized RFMs. Importantly, K can vary, and we study the properties
of the discretized RFM as a function of K. Because the RFM is conceptually defined in func-
tion space without reference to discretization, its numerical realization preserves approximation
quality in the limit K — oo. Consequently, the same trained model can be applied across the
entire hierarchy of spaces RX? for K € N , provided K is sufficiently large. In this section, we
omit explicit dependence on K in the notation for the discretized RFM and target operator. We
demonstrate these properties numerically.

Our code is highly optimized, leveraging JIT compilation via jax and parallelization across
four A100 GPUs using joblib. The RFM map is efficiently evaluated with the FFT and
requires no additional tools for discretization. The input functions and the selected random
feature map require i.i.d. samples of Gaussian random fields, which is achieved using
numpy .random.randn. Given the discretization and the input-output pairs (¢, u) from sec-
tion [3, the final algorithmic step is to train the RFM via eq. [I5 and evaluate its performance.
For a fixed number of random features m, a single realization of the RFM is trained and tested.
In experiments with varying m, the parameters {Hj};nzl are resampled i.i.d. from p.
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To quantify the approximation error, we use the expected relative test error

e e 3 W) = Fn )l e TUET(@) — Fon(a's ) (67)
el o 177 (@)l 2 171 (a) || 2 ’
where {a; ;‘,:1 are i.i.d. samples from v and n’ denotes the number of test pairs. All L2(Q;R)

norms are approximated via a composite trapezoid quadrature:

K-1K-1

2w 2w 1
/0 /0 u(x,y) dydr ~ m Z Z wiw;ju(Ts, y;), (68)

i=0 j=0

where the trapezoidal weights w; and w; are defined as

%, fori=0o0ri=K —1, %, forj=00rj=K—1,
w; = w,; =
’ 1, for1<i<K —2, / 1, for1<j<K-2.

Since Y C L? for the PDE solution operator all required inner products during training are
performed in L?, which reduces the relative test error €n’ m-

4.1 Cahn-Hilliard Equation - Early Timesteps

In this section, we consider the Cahn-Hilliard equation with constant mobility term on
the physical domain Q = [0, L]?, where L = 27. We generate a high-resolution dataset of
input-output pairs by solving the Cahn-Hilliard equation on a periodic, equispaced mesh of size
K = 1024 with random initial conditions drawn from v = N(0.5,0.05Id), i.e v corresponds to
Gaussian white noise with variance o2 = 0.05 after subtracting a mean of ;4 = 0.5. Spatial
discretization is performed using an FFT-based pseudospectral method, while temporal integra-
tion employs a backward Euler method with a timestep size of dt = 0.1 [SBT23]. All datasets
on smaller mesh sizes K < 1024 used in training and testing are obtained by subsampling this
high-resolution dataset. Consequently, numerical realizations of F'f are considered up to the map
R1024% _, RI024*  We fix n = 512 training pairs and n’ = 2000 testing pairs unless otherwise
noted, and set the mobility constant to M = 3.0, while assuming a gradient energy coefficient
of €2 = 2.5 and W = 2.0 as height of the thermodynamic barrier in eq. The parameters M,
W and € are chosen in such a way, that for an early timestep T' = 5.0 the solution represents the
stadium where spinodal decomposition just has started and the two phases begin to form. The
solution maintains a mean of y = 0.5 at all times and converges to a to a binary distribution
when the two phases have completely formed at later timesteps. For the random feature map
in eq. we fix the hyperparameters as § = 45.0 and v = 0.06678. The map is evaluated
efficiently using the FFT and requires no additional tools for discretization. Hyperparameters
were hand-tuned rather than optimized. We train the RFM with A = 1078 as regularization
parameter by solving the normal equations in However, as shown in figure [6a], training with
the RFM with regularization parameters has negligible impact on the relative test error.When
a regularization parameter A is set, we obtain the coefficient vector a by solving (A+ Al)a =1b
using a direct linear solver (jnp.linalg.solve), while in the case of absent regularization we
use the pseudoinverse to obtain the minimum-norm least squares solution, implemented with
the truncated singular value decomposition in scipy.linalg.pinv2.

Our experiments investigate the RFM approximation of the initial-condition-to-solution op-
erator F'f in To provide a visual reference for this high-dimensional problem, figure |3| presents
a representative input-output pair alongside the corresponding test prediction produced by a
trained RFM. For n = 512 training pairs, m = 2048 random features and a spatial discretization
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Figure 3: Representative input-output test sample for the solution of the Cahn-Hilliard equation
at an early timestep: (c) shows a sample test input, (a) the resulting output (truth) from a
pseudospectral solver, (b) the the tranined RFM prediction, while (d) displays the pointwise
error. The relative L? error for this single prediction is 0.02593. Here, n = 512, m = 2048, and

K = 256.
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of K = 256 for each direction, the relative L? error has the order of magnitude O(1072).

We first studied the ability of the RFM to transfer its learned coefficients &, obtained from
training on a mesh of size K, to different mesh resolutions K’ for evaluation at a timestep of
T = 5.0 (figure : The lowest test error occurs when K = K’ = 64, i.e., when the training and
testing resolutions are identical. This behavior was also observed for the Burgers’ equation and
Darcy flow in [NS24] and was reported in other coeval research |Li+20]. At very low resolutions,
such as K = 16 or K = 32, the test error is mainly dominated by the discretization error, which
can become quite large and even exceeds 1.0. For instance, resolving conceptually infinite-
dimensional objects, such as our Fourier space-based feature map or the L?-norms in eq.
with only 16 grid points results in poor accuracy. Outside this regime, however, the errors
remain essentially constant across resolutions, irrespective of the training resolution K. This
suggests that the RFM determines optimal coefficients regardless of the resolution, enabling it
to generalize effectively to any mesh size. In fact, the trained model can be deployed on different
discretizations of the domain €2 (e.g., various choices of finite elements, graph-based, or particle
methods), not just on different mesh sizes. Practically, this means that high-resolution training
sets for the Cahn-Hilliard equation can be subsampled to smaller mesh sizes K (provided they
are still sufficiently fine to avoid large discretization errors) to enable faster training, yielding a
trained model with nearly identical accuracy at all higher resolutions (”superresolution”) [NS24].
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Figure 4: Expected relative test error of a trained RFM for the Cahn-Hilliard equation with
n’ = 2000 test pairs: (a) displays the invariance of test error w.r.t. training and testing on
different mesh sizes without significant loss of accuracy. (b) shows the decay of the test error
for resolution K = 128 fixed as a function of m and n; the smallest error achieved is 0.02673 for
n = 500 and m = 4096.

As illustrated in the RFM reaches a smallest expected relative test error of 0.02673 for
n = 500 and m = 512, while being evaluated on n’ = 2000 test pairs. This result is particularly
encouraging, as the observed error is comparable in magnitude to that reported for the con-
siderably simpler Burgers’ equation and Darcy flow solution operator in [NS24]. The error we
report is also of the same order of magnitude as that reported in |[Esh+-25] for the Cahn-Hilliard
solution operator. In that work, the authors used a Multi-Head Neural Operator, which is able
to capture both coarse and fine features of the solution simultaneously through its different
heads. However, the solution in |[Esh+425] was considered at a later timestep with different
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Figure 5: Results of a trained RFM for the Cahn-Hilliard solution operator FT = u(5.0;-): (a)
demonstrates the resolution-invariant test error for various m, while (b) displays the relative
error of the learned coefficient o” at resolution r w.r.t. the coefficient learned on the resolution
r = 256. Here, n = 256 training and n’ = 2000 testing pairs were used.

parameter choices - comprehensive parameter studies for the Cahn-Hilliard equation, as well
as a comparison of the RFM against Fourier Neural Operators |[Li+21] or DeepONets |[LJK21],
are left for future work. We expect that RFMs, compared to other neural operator approaches
based on deep learning, which require training large neural networks via nonconvex optimization
with stochastic gradient descent, can achieve similar performance for the Cahn-Hilliard solution
operator. In contrast, RFMs use orders of magnitude fewer trainable parameters, which can be
efficiently optimized through convex optimization.

Figure [5b|shows that for sufficiently large n, the error first empirically follows the O(m~1/2)
parameter complexity bound suggested by theorem 2.5 in [NS24]. However, this theorem does
not strictly apply here, since it requires F' to lie in the RKHS of (¢, 1) - a condition that we did
not verify. For m > 256, the error appears to start saturating and does not follow the O(m_l/ 2)
rate anymore. This behavior is likely due to fixing the regularization parameter A to a constant
value instead of scaling it with m as suggested by theorem 2.5 in [NS24]. It is also possible that
the Cahn-Hilliard solution map does not belong to the RKHS Hy,, introducing an additional
misspecification error. In contrast, if we train the RFM on a single input-output pair, the rel-
ative error for this pair converges to zero, as illustrated in Figure[7], at rates that increase with m.

Figure [pa]illustrates that the expected relative test error remains essentially unchanged when
varying the mesh resolution used for training and evaluation. This robustness arises from the
formulation of the RFM directly in function spaces; In contrast, other machine learning-based
surrogate models defined in finite-dimensional spaces typically show increasing test errors as
the mesh is refined (see [Bha+21, section 4] for a numerical discussion of this effect). Figure
presents the expected relative test error as a function of mesh resolution for three different
values of m. At very coarse resolutions, the error exhibits slight fluctuations, but it stabilizes to
a constant value for large K. This value differs only slightly on the number of random features
that are taken into account. In figure we plot the relative error of the learned parameter
a(r) at resolution r w.r.t. the parameter learned at the highest resolution trained, which was
r = 256. Figure suggests that the learned coefficients a(K) converges toward a limiting
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value a(o0) as K — oo, further highlighting the RFM’s construction as a mapping between
infinite-dimensional spaces.

Finally, we investigated the effect of both different regularization parameters A and varying
hyperparameters  and 7 on the relative test error. As illustrated in [6a] it was found that
regularization has a negligible impact on the relative test error in our setting. Figure [6b] shows
that the relative error decreases as the hyperparameter 3 in the filter function [59] is chosen
smaller. The influence of v in the considered range is only minor. The smallest relative error is
obtained for a choice of v = 0.075 and S = 25.0. Overall, however, the relative error depends
only weakly on the exact choice of v and 8 within a fairly large range: for example, the relative
error for the pair (y = 0.055,8 = 65) is 0.03833, while for the pair (y = 0.075,5 = 25) it is
0.02715. This suggests that the structure of the filter function is the most important factor, and
as mentioned at the beginning, precise parameter optimization can be omitted.
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Figure 6: Dependence of the relative test error on the hyperparameters of the trained RFM for
the Cahn-Hilliard solution operator F! with m = 512, n = 256 training and n/ = 2000 test
pairs: (a) demonstrates the invariance of the test error for various regularization parameters A,
while (b) shows the decay of the test error as a function of the hyperparameters v and [3; the
smallest error achieved is 0.02715 for v = 0.075 and § = 25.0.
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the pointwise error for different m, while (f) displays the relative error as a function of m. Here,
K = 128 was chosen as spatial discretization.



4.2 Cahn-Hilliard Equation - Late Timesteps

In this section, we again consider the solution operator FT for the Cahn-Hilliard equation,
but now for a late timestep where the two phases are already formed. The computational do-
main considered is again Q = [0, 27]2, and we generate a high-resolution dataset of input-output
pairs using the same pseudospectral solver as in section We assume a mobility constant
of M = 1.0, W = 2.0 as height of the thermodynamic barrier and €2 = 0.5 as gradient energy
coefficient. For the adapted sigmoid function, we set the hyperparameter to 5 = 100.

As shown in figure [8] our chosen random features are not suited to approximate the solution
operator at all. Even for m = 8192 random features, the operator cannot be approximated
reliably - the randomness of a is overly dominant in the result. A potential remedy could be
smoothing a, e.g. with a Matérn kernel. This will be subject to future work. An other alter-
native is to apply Fourier random features again also for late timesteps, but to adapt the filter
function to the binary distribution. However, our experiments in this direction have not been
successful so far.

However, if one considers only a single input—output pair (a;,y;) and approximates the so-
lution using the random features in as illustrated in figure [9] the result converges to y;, but
this time significantly more slowly compared to early timesteps and only for O(10*) random
features m. This convergence is consistent with the findings of [Lia24]. For operator learning,
however, the random feature mapping appears unsuitable, unless both m and n are chosen
in the order of O(10*) — O(10%), which however exceeds the VRAM capacity of our GPUs used
in our experiments.
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(¢) Input (d) Pointwise error

Figure 8: Representative input-output test sample for the solution of the Cahn-Hilliard equation
at a late timestep: (c) shows a sample test input, (a) the resulting output (truth) from a
pseudospectral solver, (b) the the tranined RFM prediction, while (d) displays the pointwise
error. The relative L? error for this single prediction is 0.549. Here, n = 1024, m = 8192, and
K =128.
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Figure 9: Results of a trained RFM for the Cahn-Hilliard solution operator F' for one single
input-output pair (a1,y;) at a late timestep 7 (a) displays yi, (e) displays a;. (b) - (d) show
the pointwise error for different m, while (f) displays the relative error as a function of m. Here,

K = 128 was chosen as spatial discretization.
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5 Conclusion

In this work, we investigated the RFM as a scalable operator learning technique for approxi-
mating tumor growth models. We focused on the Cahn—Hilliard equation as the prototypical
phase-field model for tumor growth and successfully demonstrated that the RFM is capable of
accurately learning the initial-condition-to-solution operator, particularly at an early timestep
where the two phases are just beginning to form.

Our first contribution (C1) involved applying the RFM to the stationary, linearized Cahn-
Hilliard equation on a disk, where we provided a rigorous spectral characterization of the corre-
sponding RKHS. In doing so, we established a solid theoretical foundation for applying random
features in operator learning for fourth-order PDEs. In our second contribution (C2), we applied
the RFM to the Cahn—Hilliard equation at early timesteps, where spinodal decomposition just
begins. We found out, that by constructing a Fourier-space filter deduced from the dispersion
relation of the Cahn—Hilliard equation, we selectively retained the physically relevant wavenum-
bers responsible for interface formation while suppressing both low-frequency background modes
and high-frequency noise. Together with the ELU activation function, this filtering strategy
allowed the model to accurately approximate the initial-condition-to-solution operator of the
equation at early timesteps. The numerical experiments demonstrated that the random feature
method achieves high accuracy in approximating the initial-condition-to-solution operator of
the Cahn—Hilliard equation already with a moderate number of features, yielding relative errors
on the order of O(1072). The trained model also generalized seamlessly across different spatial
resolutions, confirming the mesh-invariance property built into the methodology. Furthermore,
the approximation error consistently decreased as the number of random features increased, in
line with the theoretical convergence guarantees of the RFM. Our third contribution (C3) was
the implementation of a highly parallelized and GPU-accelerated pipeline for training the RFM
on large PDE datasets. The code is capable of approximating solution operators in a matter of
minutes, demonstrating the method’s practical viability.

Although the random feature method has proven effective for the Cahn—Hilliard equation
at early timesteps, its application to more complex biological models, such as the four-species
tumor growth model, remains an open challenge and could not be addressed in this work. Our
results suggest that applying the RFM to such coupled systems will only be meaningful if the so-
lution operator of the underlying Cahn-Hilliard equation can be approximated accurately also at
late timesteps, when the binary interface has nearly fully developed. Future work should there-
fore focus on analyzing the Cahn—Hilliard equation at late timesteps. One possibility would be
to rely on Fourier random features again and construct a suitable filter function depending on
the solution spectrum of the equation for the timestep under consideration. Future work could
also try to approximate the Cahn-Hilliard equation with a phase-dependent mobility. If this
succeeds, the next logical step would be to consider weakly coupled systems before tackling the
four-species model in its entirety.

Taken together, this thesis provides new insights into the capabilities of the RFM in the

context of operator learning for phase-field models and contributes to the ongoing effort to
develop efficient, physics-aware surrogates for models in mathematical oncology.
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